
Repository-Service pattern

The diagram points out the major benefit to using this pattern: clear and 
consistent separation between the layers of the architecture. This gives 
us the ability to change one layer with minimal impact to the others, and 
with clear direction as to what each layer contains, we can do so quickly 
and with a minimum of code.

Drawback of This Pattern

The Repository-Service Pattern is a great pattern for situations in which 
you need to query for data from a complex data store or need
layers of separation between what happens for single models vs 
combinations of models. That said, it has one primary drawback that 
needs to be taken into account.

Service pattern 

 

The diagram points out the major benefit to using this pattern: clear and 
consistent separation between the layers of the architecture. This gives 
us the ability to change one layer with minimal impact to the others, and 

clear direction as to what each layer contains, we can do so quickly 
and with a minimum of code. 

Drawback of This Pattern 

Service Pattern is a great pattern for situations in which 
you need to query for data from a complex data store or need
layers of separation between what happens for single models vs 
combinations of models. That said, it has one primary drawback that 
needs to be taken into account. 

The diagram points out the major benefit to using this pattern: clear and 
consistent separation between the layers of the architecture. This gives 
us the ability to change one layer with minimal impact to the others, and 

clear direction as to what each layer contains, we can do so quickly 

Service Pattern is a great pattern for situations in which 
you need to query for data from a complex data store or need some 
layers of separation between what happens for single models vs 
combinations of models. That said, it has one primary drawback that 



That drawback is simply this: it's a LOT of code, some of which might be 
totally unnecessary. The TicketService and FoodService classes from 
earlier do nothing except inherit from their corresponding Repositories. 
You could just as easily remove these classes and have the 
Repositories injected into the Controllers. 

I personally will argue that any real-world app will be sufficiently 
complicated so as to warrant the additional Service layer, but it's not a 
hill I'll die on. 

Summary 

The Repository-Service Pattern is a great way to architect a real-world, 
complex application. Each of the layers (Repository and Service) have a 
well defined set of concerns and abilities, and by keeping the layers 
intact we can create an easily-modified, maintainable program 
architecture. There is one major drawback, but in my opinion it doesn't 
impact the pattern enough to stop using it. 

 


	Drawback of This Pattern 
	Summary 



